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Abstract  
 
One of the most fundamental operations in SAS is to merge two data sets. When the values of the key variables involved 
in the merge are fully specified, the code is straightforward. However, if one of the tables contains wildcards in the key 
variables, standard merge and look-up techniques do not work. This paper will explore an algorithm for merging two SAS 
data sets in which the key variables of the master data set are fully specified whereas the key variables of the look-up 
data set may either be fully specified or wildcard (e.g. “don’t care”) values. The algorithm works by interpreting the look-up 
table as a tree structure: each key variable becomes a level in the tree, and blocks of unique values for the key variables 
become nodes in the tree. As the algorithm visits each level in the tree, the tree is pruned to create a binary tree in which 
one child holds the wildcard value and the other child holds the fully specified key value. If any paths from the root to the 
leaves remain after all pruning is complete, the records in the look-up data set represented by those paths are returned as 
matches. This paper is intended for intermediate to advanced users of SAS. A basic understanding of tree-based data 
structures will be helpful but not necessary. The code presented in this paper will work with Base SAS versions 9.1.3 and 
later. 
 
 

Introduction 
 
As SAS programmers, we all know how to merge two data sets when the key variables are fully specified.  But how can 
we approach a merge if one of the tables contains wildcard values in its key?  Consider the following scenario.  You are a 
real estate agent with a list of clients; each client is concerned about certain attributes in selecting a new home and is 
unconcerned about other attributes.  As a real estate agent, you naturally have a listing of houses for sale as well.  
Samples of these two data sets are below: 
 
Clients data set:       Houses data set: 
 

Client num_beds ext_color price_pnt 

 Carl Clueless * * * 

Fred Familyman 2 * C 

Fred Familyman 2 R B 

Fred Familyman 3 * C 

Fred Familyman 3 R B 

H. I. Maintenance 2 R A 

H. I. Maintenance 2 R B 

Monte Moneybags * R * 

Monte Moneybags * W * 

Sam Saver * * F 

Sam Saver 2 * D 

 
 
Inspecting the Clients data set, we see that Carl Clueless has no particular requirements in mind, and would like to see 
every house available.  Fred Familyman is on a budget, however – he has a specific price point in mind and needs a 
certain number of bedrooms to house his family; he’s willing to pay a premium if the house is his wife’s favorite color (red).  
H. I. Maintenance has very specific requirements and is willing to pay for them.  For Monte Moneybags, price is no object, 
as long as the house is red or white.  Finally, Sam Saver’s primary concern is low price – if he can get a house in the F 
price point he doesn’t care about any other attributes, but he gets a little pickier if he’s going to move up to the next price 
point.   
 
Given the list of available houses and the list of client preferences, how can we match our clients with houses that they 
might be interested in?  Basic look-up techniques such as data step merges, formats, and hash look-ups will fail due to 

House num_beds ext_color price_pnt 

1 4 G A 

2 2 R B 

3 3 W C 

4 0 B F 

5 3 R C 

price_pnt 
   F = under $75k 
   E = $75-$100k 
   D = $100-$125k 
   C = $125-$200k 
   B = $200-$300k 
   A = over $300k 

ext_color 
 
       B = Blue 
       G = Green 
       R = Red 
       W = White 
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the wild cards.  Let’s begin by looking at a straightforward solution using PROC SQL.  This will serve as our baseline 
analysis of the problem against which we can benchmark our final algorithm. 
 
 

A Simple SQL Approach 
 
In a typical SQL join, we would use an ON expression in which the corresponding variables between the two data sets to 
be merged are compared for equality.  However, PROC SQL is an extremely powerful tool for merging data, and the ON 
expression used for a join can be tailored to perform additional comparisons for more customized joins.  In our present 
scenario, we can write an ON expression in which the variables from the Clients data set are checked for equality with 
either the corresponding variables in the Houses data set or with a wild card.  Consider the following SAS Code: 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
Result: 
 

client house num_beds ext_color price_pnt 

Carl Clueless 1 4 G A 

Carl Clueless 2 2 R B 

Carl Clueless 3 3 W C 

Carl Clueless 4 0 B F 

Carl Clueless 5 3 R C 

Fred Familyman 2 2 R B 

Fred Familyman 3 3 W C 

Fred Familyman 5 3 R C 

H. I. Maintenance 2 2 R B 

Monte Moneybags 2 2 R B 

Monte Moneybags 3 3 W C 

Monte Moneybags 5 3 R C 

Sam Saver 4 0 B F 

 
 
PROC SQL has successfully merged the data sets, providing us with a list of houses for each client that matches that 
client’s preferences.  This certainly works.  However, let’s examine an alternative approach in which we envision the 
Clients data set as a tree structure which we will traverse in order to find matches with the Houses data set.  If nothing 
else, we may learn something and add some additional tools to our SAS tool belt.  Before we dive into the description of a 
tree-based algorithm for merging our data sets, let’s step back for a moment and provide a quick overview of what a tree 
is from a computer science perspective. 
 

proc sql; 
    create table test_sql as 
    select clients.client, houses.*  
    from clients as C inner join houses as H 

    on (C.price_pnt = H.price_pnt OR C.price_pnt = '*') and 
       (C.num_beds  = H.num_beds  OR C.num_beds  = '*') and 
       (C.ext_color = H.ext_color OR C.ext_color = '*') 

    order by client, house; 
quit; 



3 

A Brief Overview of Trees 
 
In computer science, a tree is a data structure consisting of nodes (or vertices) connected by edges (or branches, to 
continue the metaphor).   Unlike the more generic data structure known as a graph, a tree may not contain any cycles.  
That is, between any two nodes, there must be one and only one path along the edges.  Furthermore, a tree is 
hierarchical: a single node is identified as the root, and all other nodes are considered descendants of the root.  The 
nodes directly connected by a single edge to the root are the root’s children; the root is the parent of those same nodes.  
Those nodes in turn may have their own child nodes (which naturally are termed the grandchildren of the root).  In a 
generic tree, each node can have any number of children (including no children).  Nodes that have no children are called 
leaves.  The number of levels in a tree is equal to the longest path in the tree from the root to any leaf (the root is typically 
considered to occupy level 0; the root’s children occupy level 1, and so on).  Finally, a tree is a recursive data structure: 
every child node forms a sub-tree in which it itself is the root.    
 
There are many varieties of tree data structures in computer science: for example, by restricting the number of children 
permitted to any single node to a maximum of two, we have a binary tree.  By requiring that each node have exactly two 
children (and no less), we have a full binary tree.  Other varieties of tree data structures may restrict how nodes are added 
to and removed from the tree (and how the other nodes in the tree may or may not be rearranged as a result).   
 

Let’s use our new knowledge of trees to identify 
the relevant portions of the example tree in the 
figure to the left.  Node A is the root of the tree.  
Nodes B, C, and D are node A’s children; node A 
is the parent of B, C, and D.  Similarly, nodes E 
and F are the children of B, and B is the parent of 
E and F; E and F are siblings.  Nodes I, J, K, G, L, 
and M are the leaves of the tree.  The tree has 3 
levels (depth of 3) because the longest path from 
the root to the leaves requires traversing 3 edges 
(recall that the root is level 0).  Notice that there 
are shorter paths to the leaves, however: the leaf 
G is at the second level of the tree.  Notice also 
that not all nodes have the same number of 
children: some have three children, some have 
two children, some have one, and of course the 
leaves have no children.  Finally, notice that there 
are no cycles in the tree; that is, convince yourself 

that between any two nodes, there is one and only one path that you can travel.  Were we to add an edge between nodes 
F and G, for example, we would have a cycle and thus no longer have a tree; instead, we would have formed a graph, 
which has its own uses in computer science (such as modeling maps), but has no place in our present discussion.  
 
Now that we have a basic understanding of tree-
based data structures and their associated 
terminology, let’s discuss one of the most 
important aspects of working with trees: tree 
traversal.  Once we’ve stored our data in a tree, 
how do we go about retrieving that data in a useful 
manner?  Tree traversal is the process of visiting 
each node in a tree (and possibly performing 
some action on the data stored in each node as 
you visit it), by following the edges of the tree in 
some order.  There are several approaches we 
could take to tree traversal.  For example, a 
breadth-first traversal might visit each node in a 
level, from left-to-right, before visiting the nodes in 
the next level.  Another common traversal strategy 
is a depth-first strategy: we might visit the left-
most child, and then it’s left-most child, all the way 
until we reach the left-most leaf; having reached 
the left most leaf, we would backtrack to its parent and then visit  the next left-most child.  In other words, we would move 
down and to the left whenever possible, backtracking once we reach a leaf, until we’ve visited all nodes in the tree.  The 
example to the right illustrates a depth-first traversal of a tree using the left-most child strategy we just described (the 
numbering of the nodes indicates the order in which they would be visited using this particular depth-first strategy). 

A 

B C D 

E F 

I 

G H 

J K L M 

1 

2 8 10 

3 6 

4 

9 

5 7 

11 

12 13 
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Tables as Trees 
 
Let’s revisit the Clients data set from the introduction.  Below is the same data set, but the client variable has been moved 
to the right and the data set has been sorted by the attribute variables.  The borders of the data set have been drawn to 
clearly distinguish the by-groups within each variable.  What if we interpreted each by-group as a node in a tree?  
Variables to the left would hold the parent nodes of the variables to the right, so that each variable essentially serves as a 
level in the tree.  To the right of the data set, we have a tree-based representation of the same data set (the unlabelled 
black circle at the far left of the tree is the root, which does not have a corresponding entry in the data set). 
 
 

 
 
 
Depth-first Traversal and Pruning to Perform a Merge 
 
Our ultimate goal is to merge this data set with the Houses data set.  There are two key observations that we need to 
make to accomplish this goal: 
 

(1) A path from the root to the leaves, in which the data in the nodes in the Clients tree matches the values of the 
corresponding variables in the Houses data set (or the node in the Clients tree is a wild card) represents a match 
between the data sets. 

 

num_beds ext_color price_pnt client 

* * * 

 

Carl Clueless 

 

* * F 

 

Sam Saver 

 

* R * 

 

Monte Moneybags 

 

* W * 

 

Monte Moneybags 

 

2 * C 

 

Fred Familyman 

 

2 * D 

 

Sam Saver 

 

2 R A 

 

H. I. Maintenance 

 

2 R B 

 

Fred Familyman 

 

2 R B 

 

H. I. Maintenance 

 

3 * C 

 

Fred Familyman 

 

3 R B 

 

Fred Familyman 

 

* 

* 
* 

F 

R * 

W * 

2 

R 

* 

C 

D 

A 

B 

3 

* 

R 

C 

B 
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(2) Each node has at most two child nodes that we might need to visit to find a path from the root to the leaves: first, 
a wild card node (if present), and second, a node whose data matches the value of the corresponding variable in 
the Houses data set for the current observation. 

 
Observation (1) suggests that we are interested in a depth-first search strategy, because we are looking for paths from the 
root to the leaves to find matches between the data sets.  Observation (2) suggests that we might want to employ some 
form of pruning strategy to eliminate the sub-trees that have no chance of providing a path to the leaves so that we don’t 
waste time visiting nodes that we don’t need to.  In fact, if we employ such a pruning strategy, we will build a binary tree 
as we go which contains exactly those paths that represent matches between the two datasets.  
 
 

An Example Traversal 

 
Using the second record in the Houses data set as an example, let’s attempt a traversal of the Clients tree to illustrate our 
approach.   Below is the observation we will use in this example: 

 
 
 
 

 
Below is the Clients tree, simply rotated 90 degrees so that the root is at the top: 

 

 
 
We begin the traversal at the first level in the tree.  Recall Observation (2) from earlier: there are at most two sub-trees 
that we need to worry about traversing, the wild card sub-tree and the matching value sub-tree.  Level one in the tree 
corresponds to the num_beds variable in the Houses data set, whose value for this observation is 2.  Thus, the sub-tree 
whose root value is 3 (circled below) can be pruned.  Thus, we begin our traversal with the node with value = 2: 
 

 
 

House num_beds ext_color price_pnt 

2 2 R B 

* 

* 

* F 

R 

* 

W 

* 

2 

R * 

C D A B 

3 

* R 

C B 

Prune 

* 

* 

* F 

R 

* 

W 

* 

2 

R * 

C D A B 

3 

* R 

C B 
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Please note that we are merely performing a logical prune of the tree – we are not going to physically delete the sub-trees 
that we prune, because we might need them for matching future observations from the Houses data set.  Instead, pruning 
in this context just means that we will ignore those portions of the tree during our traversal.   
 
We are performing a depth-first traversal, so we will now visit the children of the shaded node.  Thus, we are visiting 
nodes at level two in the tree, which correspond to the ext_color variable in the Houses data set.  In this case, because 
ext_color = “R” in the Houses data set, there is nothing to prune at this level in this sub-tree, and we continue our traversal 
with the leaves under the shaded node.  The leaves correspond to the price_pnt variable, whose value in our current 
record is “B”.  We prune the leaves under the current node, keeping only a wild card node (there is none in this case) and 
a node whose value is “B”.  The current state of our traversal is illustrated below:   
 

 
 
Because we’ve successfully reached a leaf, we have our first match!  The match corresponds to the record(s) in the 
Clients data set in which num_beds = 2, ext_color = “R”, and price_pnt = “B” – there are actually two such records in the 
Clients data set, one for Fred Familyman and one for H.I. Maintenance.  Both of those clients therefore have a match with 
house #2.  We now continue our traversal, which, because we’ve reached a leaf, requires some back-tracking and then a 
continuation of the depth-first strategy.  The path that we follow is illustrated below: 
 

 
 
Once we reach the wild card node (shaded above), which is an automatic match, we prune the children as before and find 
that there are no remaining nodes to visit.  There is no match and thus we back-track to the root and continue a depth-first 
traversal of the from the root’s wild card child.  We examine level two nodes under the level one wild card node and prune 
as before: 
 

* 

* 

* F 

R 

* 

W 

* 

2 

R * 

C D A B 

Prune 

* 

* 

* F 

R 

* 

W 

* 

2 

R * 

C D B 

Prune 
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We have found another match, represented by the shaded nodes above, which corresponds to a record in the Clients 
data set for Monte Moneybags.  We continue our algorithm as illustrated below to find the fourth, and final, match for 
house #2 (a match for Carl Clueless): 
 

 
 
To convince ourselves that this worked properly, let’s examine the subset of the result data set created by the PROC SQL 
solution for house #2: 
 

client house num_beds ext_color price_pnt 

Carl Clueless 2 2 R B 

Fred Familyman 2 2 R B 

H. I. Maintenance 2 2 R B 

Monte Moneybags 2 2 R B 

 
PROC SQL also found four matches for house #2, one each for Carl Clueless, Fred Familyman, H.I. Maintenance, and 
Monte Moneybags.  Our tree-based approach produced the same result. 
 
 

Implementation 
 
Now that we understand the basic idea behind the algorithm, albeit at a high level, let’s discuss how we might implement 
this solution in SAS.  We’ll begin by determining how to store the tree structure as a whole, which, due to some limitations 
in the SAS language related to dynamic memory allocation and user-defined data types, we may have to be creative with.  
We’ll then present pseudo-code for the two key aspects of the algorithm: loading the look-up data set into the tree and 
performing the actual tree traversal.  Finally, we’ll look at the actual SAS code, breaking the code into small chunks and 
discussing each section of code in detail.  The full, final SAS macro (sans error checking that should be present in 
production code) is presented in Appendix A at the end of the paper. 

 

* 

* 

* F 

R 

* 

2 

R * 

B 

Prune 

* 

* 

* F 

R 

* 

W 

* 

2 

R * 

B 
Prune 
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Simplifying Assumptions 
 
While production code may not have the luxury to make the following simplifying assumptions, we do take a certain luxury 
in this paper in order to keep the SAS code as simple as possible.  Specifically, we assume: 
 

1. That the key variables are all character 
2. That the key variables are all the same length (even if that length exceeds the required storage for shorter 

variables) 
 
These assumptions could be removed by modifying how the code is implemented, requiring further complexity in the 
solution. 
 
 
Storing the Tree 
 
Because a tree structure is typically dynamic and can grow and shrink over time, programmers traditionally use dynamic 
memory allocation to store trees.  The structure of a single node is determined by the programmer, and then nodes are 
created and destroyed on an as-needed basis during program run-time, using only as much memory as is needed to store 
the tree.  In our case, we don’t plan to grow and shrink the tree except during its initial creation in which we load the 
Clients data set into the tree data structure.  Still, we won’t necessarily know how many nodes we’ll need ahead of time, 
and we’d rather not waste an entire pass through the Clients data set to compute the required size: we’d like to build the 
tree in one pass, dynamically allocating additional storage as needed.  
 
While SAS does not permit dynamic memory allocation in the generic sense permitted by languages such as C, it does 
(as of version 9) include a dynamically allocated data structure: the hash object.  To store our tree, we will create a couple 
of hash objects and utilize them to store the nodes and leaves of our tree, treating the hash objects as associative arrays. 
 
The basic idea behind our storage and retrieval strategy is that we will assign each node a unique numeric identifier as we 
create the tree, starting with 0 for the root.  The first hash table that we create will take as keys the parent’s node number 
and the child’s data value and return the child’s node number.  This hash table will prove extremely useful in pruning our 
tree: as we visit each level, we know the parent node number that we came from (because we were just there) and we 
know the two child data values that we’re looking for (asterisk for wild card and the current data value in the Houses data 
set).  Performing a hash find() operation will return the node numbers for the child nodes (if any) matching those 
requirements.  We can think of this table as storing the edge information from each parent to each of its children. 
 
The second hash table that we create will store information for each leaf of the tree.  The hash object will take the node 
number of the leaf and a numeric count (leaf count) as keys and return the corresponding satellite date from the look-up 
table.  The leaf count variable is needed in the key in the event that there is more than one record in the look-up data set 
for a given set of key values.  For example, there are two records in the Clients data set in which the key variables are set 
as num_beds = 2, ext_color = “R”, and price_pnt = “B”.   In this case, the leaf count allows us to return both matching 
records when the tree merge succeeds. 
 
In addition to the main hash table and leaf hash table described above, we will need to keep track of some bookkeeping 
information during the traversal.  Basically, we need to remember which nodes we’ve visited along the current path, so 
that we can backtrack when needed, and we need to remember, for each node along the current path, the status of our 
visit (not yet visited, visited left child, visited both children) when we return to that node.  For these requirements, we only 
need to store data for the current path; because the current path has a maximum length equal to the number of levels in 
the tree, and because the number of levels in the tree is simply the number of key variables used in the merge, we can 
simply use a couple arrays to store this data. 
 

  
Tree Creation Pseudo-code 
 
There are two parts to the SAS code that might be considered tricky.  The first is the method employed to load the look-up 
data set into the main hash table and the leaf hash table.  The pseudo-code presented below will be executed exactly 
once in the data step (i.e. executed inside an “if _n_ = 1 then do” block).  Omitted from the pseudo-code are the data 
declarations necessary to set-up the hash tables, which are described above.   Note that when assigning node numbers 
to the tree, node 0 refers to the root. 
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Tree Traversal Pseudo-code 
 
Most computer science text books present tree traversal as a recursive operation.  Because trees are a recursive data 
structure (a sub-tree of a tree is itself a tree), trees easily lend themselves to recursive operations.  However, recursion is 
not well supported in SAS.  Thus, we will need to write an iterative version of a depth-first tree traversal.  The below 
pseudo-code assume that the tree has already been stored in the hash tables as illustrated above.   Also, to keep the 
below pseudo-code short, I use the short-hand “visit that child” to refer to three operations: (1) obtain the node number of 
the child from the main hash table, (2) increment the level index, (3) update the path history arrays at the new level index 
with the new node number and with a status that indicates that the new node number has never been visited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Set level to 1 (Count root as level one since SAS arrays are 1-based) 

Set current node to root 

Mark that current node has never been visited 

 

Do until root attempts to backtrack to its parent 

    If we reach a leaf 

        Output all satellite data from leaves hash 

        Backtrack to parent 

    End If 

 

    Else if current node has never been visited then 

        Mark node as having wildcard child checked 

        If node has a wildcard child then visit that child 

    End If 

 

    Else if current node has checked wildcard child then 

        Mark node has having checked both children 

        If node has a matching value child then visit that child 

    End If 

 

    Else if current node has checked both children then 

        Clear path history arrays at this level 

        Backtrack to parent 

    End If 
End Do 

Set node-count to 0 

 

For each observation in look-up data set 

    Set parent-node-number to 0 

 

    For each key variable 

 

        If hash does not contain parent-node-number and current key value Then 

            Increment node-count 

            Set node-number to node-count 

            Add parent-node-number and key value to hash with node-number as data 

        End If 

 

        Set parent-node-number to node-number 

    End For 

 

    Find highest leaf-count for node-number in leaves hash 

    Add satellite data to leaves hash for node-number and leaf-count + 1 

End For 
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At Long Last: the SAS Code 
 
This section will look at the SAS code in small sections and explain them; the full, uninterrupted SAS code is presented in 
Appendix A of this paper.  The first section of the macro is the %macro statement itself and the parameter declarations: 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Next we create a local constant to make checking the result of hash operations more self-documenting; hash methods 
such as find() and check() return a 0 on success: 
 
 
 
 
 
Next we determine the number of key variables passed to this macro.  Because the caller of this macro may use a 
variable range (like key1-key10), it’s nice to let SAS do the work in determining the list of variables that make up the key: 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
We can now begin the main algorithm, which takes place within a single DATA step.  The first portion of the step occurs 
within an “if _n_ = 1 then do” block which builds the tree from the look-up data set.  The below code includes just the 
portion of that first block which declares the hash objects as described in the earlier implementation sections of this paper. 

%macro wildcard_merge( 
    master=,    /* Master table */ 

    lookup=,    /* Look-up table containing wildcards */ 
    key=,       /* Key variables */ 
    keySize=1,  /* Size of largest key variable (1 by default) */ 

    satellite=, /* Satellite var(s) on &lookup, quoted and comma-sep */ 
    out=,       /* Output dataset */  
    wildchar=*, /* Wildcard character (asterisk by default) */ 

    hashexp=16, /* Value for hashexp parameter (16 by default) */ 
); 

    %local found; 
    %let found = 0; /* Return value from hash find() on success */ 

    /* Determine number of key variables */ 

    %local numLevels; 
 
    data _null_; 

        set &master; 
        array keys[*] &key; 
        call symput("numLevels", put(dim(keys) + 1, 8.)); * +1 for root; 

        stop; 
    run; 
 

    /* Main algorithm */ 

    data &out; 
 
        /* Build Tree */ 

        if _n_ = 1 then do; 
            length nodeValue $&keySize parentNodeNbr nodeNbr leafCount 8; 
            drop nodeValue parentNodeNbr nodeNbr leafCount; 

 
            declare hash tree(hashexp: &hashexp); 
            tree.defineKey('parentNodeNbr', 'nodeValue'); 

            tree.defineData('nodeNbr');             
            tree.defineDone(); 
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Continuing the hash definition with the leaves hash: 
 
 
 
 
 
 
 
 
 
Below is the remainder of the tree-building code, which closely follows the pseudo-code in the Tree Creation Pseudo-
Code section earlier in the paper.  Notice that we permit multiple look-up records to correspond to the same leaf node via 
the leafCount key in the leaves hash.  We determine how many records already map to each leaf before adding a new 
record by checking each leafCount value (starting from 1) until we find no match in the leaves hash. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this point, the tree has been stored (between the two hash tables), and the “if _n_ = 1 then do” block is complete.  From 
here on, normal processing of the DATA step (i.e. the implicit DATA step loop) takes over.  First, we create a couple of 
arrays to store information on the path that are currently following during our traversal: 
 
 
 
 
 
 
We then read one observation from the master data set, which will we attempt to match to the tree using tree traversal 
and pruning: 
 

            declare hash leaves(hashexp: &hashexp); 
            leaves.defineKey('nodeNbr', 'leafCount'); 

            leaves.defineData(&satellite); 
            leaves.defineDone(); 
 

            nodeCount = 0; /* Max node number in tree */ 
            drop nodeCount; 

 
            /* Load lookup data set into tree */ 
            do until(end); 

                set &lookup end=end; 
                array keys[*] &key; 
 

                parentNodeNbr = 0; /* Zero represents the root */ 
 
                do index=1 to dim(keys); 

                    nodeValue = keys[index]; 
                    nodeNbr = nodeCount + 1; 
                    if tree.find() ne &found then do; 

                        tree.add(); 
                        nodeCount = nodeCount + 1; 
                    end; 

                    parentNodeNbr = nodeNbr; 
                end; 
                drop index; 

 
                /* Build leaf lookup - last nodeNbr is a leaf */ 
                do leafCount = 1 by 1; 

                    if leaves.check() ne &found then leave; 
                end; 
                leaves.add(); 

            end; 
        end; 
 

        /* Define history arrays to keep track of our traversal */ 

        array nodeNumber[&numLevels] _temporary_;  
        array nodeStatus[&numLevels] _temporary_;  
 

        /* Read the current master record */ 
        set &master; 
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Finally, we are ready to begin the traversal of the tree for the current master record.  Any paths that we find from the root 
to the leaves represent a match that we will output.  We begin with some set-up code.  We are going to track where we 
are in the tree using a level variable, which will serve as an index to the history arrays defined above.  We begin with level 
= 1, which represents the root (despite the discussion in the Brief Overview of Trees that the root is at level 0, we are 
using level 1 for the root because SAS arrays start with index 1).  We set our path to begin at the root and mark that the 
root is not visited.  Each variable in the nodeStatus array will take on one of three possible values over the course of the 
traversal: 0 = no children visited; 1 = wildcard child visited (or does not exist); 2 = both children visited (or do not exist).  
Backtracking in this algorithm basically consists of moving back up a level in the path history and then continuing the 
traversal; if we backtrack from the root because it is fully visited, we will set level to 0 which will indicate that our traversal 
is complete. 
 
 
 
 
 
 
 
 
 
 
 
 
 
At each stage of the traversal, there are four things that might happen: 

1. We reach a leaf 
2. The current node has never been visited 
3. We visited (or attempted to visit) the wildcard child of the current node 
4. We visited (or attempted to visit) both children of the current node 

Each of these cases is handled one at a time within the do loop.  We begin with the base case of reaching a leaf, where 
we output all of the satellite records associated with the leaf and then backtrack to the parent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We continue with the case in which no children have been visited.  In this case, we check whether a wildcard child exists, 
and if so, we set variables appropriately so that we visit it on the next iteration of the loop. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        /* Traverse the tree (iteratively) to find all matches */ 

        level = 1; /* Level 1 is the root */ 
        drop level; 
 

        nodeNumber[level] = 0; /* Start at the root */ 
        nodeStatus[level] = 0; /* Mark that no children are visited */ 
 

        do until (level = 0);  
 

            /* Base Case: Reached a leaf */ 
            if level = &numLevels then do;  
                do leafCount = 1 by 1; 

                    if leaves.find() ne &found then leave; 
                    output;  
                end; 

                level = level - 1; /* Back-up to parent */ 
            end;  
 

            /* Case 0: No children visited */ 
         else if nodeStatus[level] = 0 then do; 
                nodeStatus[level] = 1;  

 
                /* Determine whether this node has a wild char child */ 
                parentNodeNbr = nodeNumber[level]; 

                nodeValue = "&WILDCHAR"; 
          if tree.find() = &found then do;  
                    level = level + 1; 

                    nodeNumber[level] = nodeNbr; 
                    nodeStatus[level] = 0; 
          end; 

         end; 
 



13 

We continue with the case in which the wildcard child has already been visited, or, if there is no wildcard child, that fact 
has already been checked. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We finish with the case in which both children have been visited.  If one or both children do not exist, that fact has been 
checked already.  In this case, the only thing to do is to clear the history arrays for the current level and back-track to the 
parent: 
 
 
 
 
 
 
 
 
 
 
Before we exit the loop, we code a block to catch the impossible case in which the node status is set to some other value 
not already discussed.  Then we close all open conditionals, loops, the DATA step itself, and the macro itself: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Benchmarking: Tree-based Merge vs. SQL 
 
If we stop to look back at the PROC SQL solution presented at the beginning of this macro, we might ask ourselves why 
we bothered to write such a complicated solution when a few lines of PROC SQL would do.  Beyond learning about trees 
and playing with SAS’s hash functionality, it does turn out that in most cases, unless the look-up table is very small 
relative to the size of the master table, the tree-based approach is faster – much faster.  
 
To illustrate this, I performed the following benchmarking procedure.  Using a SAS program, I randomly generated master 
and lookup datasets, where the key variables were of length one and could take on any character from A to J with equal 
probability.  In the wildcard dataset, there was a 50% chance that the key variables would take on a wildcard value 
instead.  The program merged the master and lookup data sets using both the PROC SQL approach and the tree-based 
approach and the resulting data sets were compared to confirm that both approaches produced same result. 
 

            /* Case 1: Already visited (or attempted) wild card child */ 
            else if nodeStatus[level] = 1 then do;  
                nodeStatus[level] = 2; 

 
                /* Determine whether this node has a value child */ 
                parentNodeNbr = nodeNumber[level]; 

                nodeValue = keys[level]; 
                if tree.find() = &found then do;  
                    level = level + 1; 

                    nodeNumber[level] = nodeNbr; 
                    nodeStatus[level] = 0; 
                end; 

            end; 
 

            /* Case 2: Already visited (or attempted) both children */ 
            else if nodeStatus[level] = 2 then do;  
                nodeNumber[level] = .; 

                nodeStatus[level] = .; 
                level = level - 1; /* Back-up to parent */ 
            end 

 

            /* Unexpected case - Error condition */ 

            else do;  
                put "ERROR: Unexpected condition"; 
            end; 

        end; 
    run; 
%mend; 
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This experiment was executed several times, varying three parameters: (1) the number of keys used in the merge, (2) the 
number of observations in the master data set, and (3) the number of observations in the lookup dataset.  For each 
combination of parameters, I ran 3 trials and reported the average real execution time in the table below (Note: for the one 
case where log10(M*L) = 10, I only ran one trial due to the long SQL execution time).  The benchmarking environment is 
enumerated below: 
 
Execution environment: 

• SAS 9.1.3 SP4 

• AIX 5.3 (64-bit ) 
• SPDS(AIX) 4.40 server 

 
Run locally from: 

• Enterprise Guide 4.1 

• Windows XP SP3 
 
The results of the benchmarking are summarized in the following table: 
 

Num Keys Master Obs Lookup Obs 
log10 

(M*L) 
SQL Algorithm 

Tree 

Algorithm 
Speed-up 

10 10,000 1,000 7 0:02.4 0:00.6 4.05 times 

10 1,000 10,000 7 0:02.5 0:00.3 8.62 times 

10 10,000 10,000 8 0:23.8 0:01.8 13.27 times 

20 10,000 10,000 8 0:23.5 0:02.2 10.90 times 

10 10,000 100,000 9 3:52.1 0:07.1 32.88 times 

10 100,000 10,000 9 3:53.2 0:17.0 13.74 times 

20 10,000 100,000 9 3:51.6 0:12.1 19.17 times 

20 1,000,000 1,000 9 3:45.7 1:01.2 3.69 times 

20 10,000,000 100 9 3:40.5 3:22.4 1.09 times 

20 1,000,000 10,000 10 37:51.5 3:11.7 11.85 times 

 
The column log10 (M*L) is the base-10 logarithm of the number of master data set observations times lookup data set 
observations.  Notice that for a given value in this column, the SQL approach has a fairly consistent execution time.  
However, it is very interesting to note that as the number of observations in the lookup data set shrinks while the log10 
(M*L) value is held constant, the tree algorithm’s execution time worsens and approaches the SQL algorithm.   It seems, 
then, that the tree-based algorithm is most useful when the size of the lookup data set is large – in fact, it appears that the 
larger the lookup dataset is relative to the master data set, the better the tree algorithm performs.  Varying the number of 
keys does not appear to have a substantial impact for either algorithm. 
 
 

Conclusion  
 
Merging two data sets in which the key values of the look-up data set contain wildcards can be a challenge.  This paper 
presented two techniques to perform such a merge: a simple approach using PROC SQL and a more complex tree-based 
algorithm.  Having thoroughly discussed the background for the algorithm and its implementation, the paper showed that 
the tree-based approach, while more complicated to implement, provides an impressive performance gain if the size of 
the data set containing wild cards in the tree is large relative to the other data set.   
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Appendix A: Full SAS Macro 
 
%macro wildcard_merge( 
    master=,    /* Master table */ 
    lookup=,    /* Look-up table containing wildcards */ 

    key=,       /* Key variables */ 
    keySize=1,  /* Size of largest key variable (1 by default) */ 
    satellite=, /* Satellite var(s) on &lookup, quoted and comma-sep */ 

    out=,       /* Output dataset */  
    wildchar=*, /* Wildcard character (asterisk by default) */ 
    hashexp=16, /* Value for hashexp parameter (16 by default) */ 

); 
    %local found; 
    %let found = 0; /* Return value from hash find() on success */ 

 
    /* Determine number of key variables */ 
    %local numLevels; 

 
    data _null_; 
        set &master; 

        array keys[*] &key; 
        call symput("numLevels", put(dim(keys) + 1, 8.)); * +1 for root; 
        stop; 

    run; 
 
    /* Main algorithm */ 

    data &out; 
 
        /* Build Tree */ 

        if _n_ = 1 then do; 
            length nodeValue $&keySize parentNodeNbr nodeNbr leafCount 8; 
            drop nodeValue parentNodeNbr nodeNbr leafCount; 

 
            declare hash tree(hashexp: &hashexp); 
            tree.defineKey('parentNodeNbr', 'nodeValue'); 

            tree.defineData('nodeNbr');             
            tree.defineDone(); 
 

            declare hash leaves(hashexp: &hashexp); 
            leaves.defineKey('nodeNbr', 'leafCount'); 
            leaves.defineData(&satellite); 

            leaves.defineDone(); 
 
            nodeCount = 0; /* Max node number in tree */ 

            drop nodeCount; 
 
            /* Load lookup data set into tree */ 

            do until(end); 
                set &lookup end=end; 
                array keys[*] &key; 
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                parentNodeNbr = 0; /* Zero represents the root */ 
 

                do index=1 to dim(keys); 
                    nodeValue = keys[index]; 
                    nodeNbr = nodeCount + 1; 

                    if tree.find() ne &found then do; 
                        tree.add(); 
                        nodeCount = nodeCount + 1; 

                    end; 
                    parentNodeNbr = nodeNbr; 
                end; 

                drop index; 
 
                /* Build leaf lookup - last nodeNbr is a leaf */ 

                do leafCount = 1 by 1; 
                    if leaves.check() ne &found then leave; 
                end; 

                leaves.add(); 
            end; 
        end; 

 
        /* Define history arrays to keep track of our traversal */ 
        array nodeNumber[&numLevels] _temporary_;  

        array nodeStatus[&numLevels] _temporary_;  
 
        /* Read the current master record */ 

        set &master; 
 
        /* Traverse the tree (iteratively) to find all matches */ 

        level = 1; /* Level 1 is the root */ 
        drop level; 
 

        nodeNumber[level] = 0; /* Start at the root */ 
        nodeStatus[level] = 0; /* Mark that no children are visited */ 
 

        do until (level = 0);  
            /* Base Case: Reached a leaf */ 
            if level = &numLevels then do;  

                do leafCount = 1 by 1; 
                    if leaves.find() ne &found then leave; 
                    output;  

                end; 
                level = level - 1; /* Back-up to parent */ 
            end;  

 
            /* Case 0: No children visited */ 
         else if nodeStatus[level] = 0 then do; 

                nodeStatus[level] = 1;  
 
                /* Determine whether this node has a wild char child */ 

                parentNodeNbr = nodeNumber[level]; 
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                nodeValue = "&WILDCHAR"; 
          if tree.find() = &found then do;  

                    level = level + 1; 
                    nodeNumber[level] = nodeNbr; 
                    nodeStatus[level] = 0; 

          end; 
         end; 
 

            /* Case 1: Already visited (or attempted) wild card child */ 
            else if nodeStatus[level] = 1 then do;  
                nodeStatus[level] = 2; 

 
                /* Determine whether this node has a value child */ 
                parentNodeNbr = nodeNumber[level]; 

                nodeValue = keys[level]; 
                if tree.find() = &found then do;  
                    level = level + 1; 

                    nodeNumber[level] = nodeNbr; 
                    nodeStatus[level] = 0; 
                end; 

            end; 
 
            /* Case 2: Already visited (or attempted) both children */ 

            else if nodeStatus[level] = 2 then do;  
                nodeNumber[level] = .; 
                nodeStatus[level] = .; 

                level = level - 1; /* Back-up to parent */ 
            end; 
 

            /* Unexpected case - Error condition */ 
            else do;  
                put "ERROR: Unexpected condition"; 

            end; 
        end; 
    run; 

%mend; 
 


