
1 

PharmaSUG 2013 - Paper AD09 

A Simple Approach to the Automated Unit Testing of Clinical SAS® Macros 
Matthew Nizol, United BioSource Corporation, Ann Arbor, MI 

 

ABSTRACT 
Federal regulations require software used in the analysis of clinical trials to be validated.  In the pharmaceutical 
industry, SAS programs used to generate data sets, tables, listings, and figures are often validated via double 
programming.  However, unit testing is often a more appropriate solution for validating shared macros which are used 
across multiple studies.  Unit testing is the process of executing the smallest component of a software system on a 
known set of inputs and comparing the resulting output to a predefined set of expected results.  Unit tests provide 
confidence that code is implemented correctly; they are also a safety net that protects against unintentional changes 
to software.  But, unit tests can be challenging to write and tedious to run.  A unit test framework makes the tester’s 
life easier: it provides a library of macros which both standardize and simplify the writing of tests; it provides a means 
to run multiple tests at once to make regression testing easier after software is changed; and it automatically reports 
the results of all test runs so that feedback is immediate.  This paper will discuss how to write, in as little code as 
possible, a simple, maintainable, and robust unit test framework for the testing of clinical SAS macros.  This 
barebones test framework will be useful in its own right, easily validated due to its simplicity, and may also serve as a 
starting point for an organization to develop a more complex testing solution to meet their own unique needs. 

 

INTRODUCTION 
Validation provides confidence that software has been implemented correctly.  For clinical programmers, validation is 
not an optional activity: U.S. Federal Regulations mandate it [4].  Most pharmaceutical companies and clinical 
research organizations fulfill their validation requirements through double programming.  Double programming 
typically involves two programmers independently developing two programs following the same specification.  The 
programmers execute both programs using the clinical database as input.  If the results match, the output is declared 
validated.  This approach only validates the output with respect to the current state of the clinical database.  As a 
result, when the clinical database is updated with new data, previously validated programs may fail on unexpected 
data points.  A shared macro which is to be used across many studies, however, must work properly and robustly on 
data which the original programmer has never seen.  To validate a shared macro, a programmer needs two things: 

1. A set of input data.  Designing good test data is a large topic beyond the scope of this paper: a good book 
on software testing can provide guidance. 

2. For each set of input data, a corresponding set of expected results based on the macro’s specification. 

The programmer then executes the macro using the test input data and compares the actual results to the expected 
results.  This process is called unit testing.  This brief description of unit testing and double programming has 
presented something of a false dichotomy between the two.  In reality, there is significant overlap between the 
concepts.  If a SAS program is a unit, then double programming can be thought of as a form of unit testing: the 
clinical database serves as the input data, and the second (validation) program dynamically generates the expected 
results.  The problem with using traditional double programming to validate a shared macro is that a given study’s 
clinical database may not fully test the macro.  Double programming a shared macro using synthetic input data 
designed to fully exercise the macro, however, could be a powerful means to unit test particularly complex macros. 

Now imagine the following scenario: a programmer spends 4 hours testing a macro, when a test uncovers a bug.  
Famously, Glen Myers defined testing as "the process of executing a program with the intent of finding errors.”  
Therefore, the test was successful.  But the programmer faces a dilemma: how do they know that the changes they 
make to the program to fix the error do not introduce new bugs?  The solution is regression testing: re-testing portions 
of software to test whether the program has deteriorated.  But if re-testing requires tedious, time-consuming manual 
review of the results, programmers may be discouraged from writing good tests; that is, tests which are likely to find 
errors.  Moreover, if regression testing is difficult, programmers may be afraid to enhance existing macros.  The 
solution is to automate unit testing through the use of a unit testing framework.  In the context of this paper, a unit 
testing framework consists of two components: 

1. A library of macros which standardize test programs, automatically compare expected results to actual 
results, and provide various useful utilities to make common testing tasks easier 
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2. A driver program which runs all test programs, automatically detects the results of each test case, and 
reports the results of all tests to a formatted report 

Standardized test programs that use a unit test framework take less effort to write once a programmer learns the 
standard pattern.  Standardizing also makes the results available to a driver program.  The driver program, in turn, 
makes regression testing much easier by running multiple tests and reporting the results without manual intervention.  
The automatically generated test report can serve as documentation of validation activities to meet regulatory 
requirements.    

The concept of a unit testing framework is far from novel.  Open source frameworks are available for the unit testing 
of programs written in languages such as Java and C#.  Even within the SAS community, frameworks such as FUTS 
[8] and SASUnit [3] are freely available.  For many reasons, however, a company might be reluctant to adopt a third 
party unit testing framework.  Company SOPs may require the validation of all installed third party software.  Some 
frameworks [8] require software in addition to SAS to function, which may be undesirable for some organizations.  A 
custom unit testing framework can be written entirely in SAS with ODS output, leveraging the development know-how 
and ODS templates already present in a clinical programming environment.  The framework can be kept very simple, 
thereby making it simple to learn, use, and validate.  This paper will illustrate the simplicity of the basic concepts 
behind unit testing frameworks and discuss how a custom testing framework that is robust yet simple can be written 
entirely in SAS in very few lines of code. 

 

DESIGN OF A SIMPLE UNIT TEST FRAMEWORK 
As described earlier, a simple unit test framework consists of two essential components: a library of macros and a 
driver program.  The library of macros can be organized into three broad categories: 

• Test description macros write messages to the log which identify the beginning and end of a test, describe 
the test’s purpose, and describe the expected results.   

• Utility macros carry out common testing tasks to make the test writer’s life easier; these are strictly optional 
additions to the framework.   

• Assertion macros compare the test’s expected results to actual results and write a message to the log 
indicating whether the test passed or failed.  The framework must contain a variety of assertion macros to 
compare different types of results (data sets, macro variables, external files, etc.).   

New assertion macros and utility macros can be added to the framework as the need arises.  Tying the framework 
together is the driver program, which executes all unit test programs sequentially in batch mode, detects the results of 
all tests contained within the called programs, summarizes the test results, and writes a report of the test results.  
Figure 1 below provides a high-level graphical view of this simple design.   

 

 
Figure 1: Schematic of simple automated test framework.  Items shaded in blue are the framework proper. 
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ANATOMY OF A TEST PROGRAM 
With the above schematic in mind, this section will begin describing the components of the framework by examining a 
unit test program for a simple macro named %target_day().  The %target_day() macro computes the target visit day 
within a chemotherapy cycle based on the cycle week.  The target day for week 1 is day 1, the target day for week 2 
is day 8, the target day for week 3 is day 15, and so on. 

 
To be executed properly by the framework’s driver program, the test program must call framework macros and be 
written according to a framework-specific pattern.  The test program must begin by pointing to a configuration file 
which identifies the location of the macro library.  A specific test case begins with a call to the %test_begin() macro.  
This macro writes a line to the log which indicates to the driver program that a new test is beginning along with the 
name of the macro under test and a unique identification number for the test.  

 
This section of code writes the following to the SAS log: 

 
Next, the test program calls a couple macros to describe the purpose of the test and the expected results.  The 
descriptions will be written to the log and read by the driver program.  The driver program will store the descriptions 
along with the test results so that they may be displayed in the test report.  If the description of a test or its expected 
result is long, the macros may be called multiple times.  All descriptions printed to the log for a given test case will be 
concatenated.  Long descriptions within a single macro call will be broken into lines no longer than 200 characters 
each and then later reassembled by the driver program. 

 
The above lines write the following to the SAS log: 

 
Essentially, test description macros such as %test_begin() and %test_describe() are just wrappers around %PUT 
statements.  The next step is to set-up the test’s input data and expected results.  Input data and expected results 
may take the form of data sets, macro variables, external files, and so on.  Data sets may be stored externally or they 
may be defined through a DATA step within the test.  Note, multiple tests could share the same input data and so this 
section could occur at the start of a test program containing multiple related tests.  For the %target_day() test 
program, the input data and expected results take the form of data sets.  The %target_day() macro is supposed to 
return ((WEEK * 7) – 6) if WEEK is greater than or equal to 1 and should return a missing value otherwise.  Hence, 
the below input data will exercise the macro to ensure that it correctly handles missing, negative, and positive values. 

 

DESC: Test the target_day macro for several values 
EXPECT: OUTVAR equals (WEEK*7)-6 when WEEK is >= 1. 
EXPECT: OUTVAR is missing otherwise 

%test_describe(desc=Test the target_day macro for several values); 
%test_expected(desc=OUTVAR equals (WEEK*7)-6 when WEEK is >= 1. );  
%test_expected(desc=OUTVAR is missing otherwise); 

 TEST: target_day [1] 

%include "..\config.sas"; 
%test_begin(unit=target_day, id=1); 

data input (keep=week) 
     expected; 
   infile cards; 
   input week tgtday; 
   datalines; 
. . 
-1 . 
0 . 
1 1 
2 8 
3 15 
3.6 15 
run; 

%macro target_day(week=, outvar=); 
   if &week >= 1 then &outvar = (int(&week) * 7) - 6; 
   else &outvar = .; 
%mend target_day; 
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The unit test program must now call %target_day() using the input data and save the actual results: 

 
Data sets of expected and actual results now exist.  The next step is to compare the actual data set to the expected 
data set and to report the results of the comparison to the log.  The comparison is done through an assertion macro.  
An assertion macro is a macro which asserts that a given condition is true.  If the condition is in fact true, the 
assertion macro prints a success message to the log.  If the condition is false, the assertion macro prints a failure 
message to the log.  The types of conditions to be tested determine the assertion macros which must be written.  
However, the vast majority of tests for SAS macros can be written using two types of assertions: 

• Asserting that two data sets are identical 

• Asserting that two macro variables have the same value, or equivalently that two strings of text are identical 

If test results can be loaded into a data set or stored in a macro variable, then one of the above assertions are all that 
is needed for the test.  That is not to say that other assertion types are not necessary or useful for some tests.  
Perusing Wright’s paper on the FUTS framework [8] provides a sense of the possibilities.  Other possible assertion 
types include asserting that a data set is empty, that a file does (or does not) exist, that external files match, and so 
forth.  The next section of the paper will discuss the two primary assertion macros in more detail, but the next step of 
the test program is to call %assert_data_equal() to assert that the actual data set matches the expected data set: 

 
Since the %target_day() macro produces the expected results, %assert_data_equal() writes the following to the log: 

 
A failing test would have written “RESULT: Fail” to the log.  A test requiring manual review (designated by calling 
%assert_manual) would have written “RESULT: Manual” to the log.  The test concludes with a call to %test_end(): 

 
This macro writes the following line to the log: 

 
The ENDTEST line notifies the driver program that the test is complete.  The driver program can then determine the 
overall result for the test case, write the result to an output data set, and clear all variables related to the test case. 

 

IMPLEMENTATION OF ASSERTION MACROS 
As discussed in the previous section, assertion macros compare expected results to actual results by asserting that a 
given condition is true.  Assertion macros may be kept extremely simple.  In fact, some assertion macros may be so 
simple that it seems an unnecessary bother to write a macro.  However, by creating a family of assertion macros, all 
with similar interfaces and behavior, the chore of writing test programs is made easier.  More importantly, the family 
of assertion macros can all write the test result in a consistent manner to the log so that the driver program can 
correctly detect the test result.  If the framework is updated such that the test result message needs to change, only 
the assertion macros and not the test programs themselves will need updates. 

One of the most common assertions tests whether two symbols (i.e. two strings of text) are equivalent.  Below is an 
implementation of an assertion macro, named %assert_sym_equal(), to test this condition:     

 
Another extremely common assertion is to test whether two data sets are equivalent.  Below is an implementation of 
a macro named %assert_data_equal() to test this condition.  Recall that this macro was used in the example test 

ENDTEST 

%macro assert_sym_equal(sym1=, sym2=); 
   %if %superq(sym1) eq %superq(sym2) %then %put RESULT: Pass; 
   %else %put RESULT: Fail; 
%mend assert_sym_equal; 

%test_end; 

RESULT: Pass 

%assert_data_equal(ds1=actual, ds2=expected); 

data actual; 
   set input; 
   %target_day(week=week, outvar=tgtday) 
run; 
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program above.  The %assert_data_equal() macro is little more than a wrapper around PROC COMPARE.   In 
addition to reporting the results of a comparison to the listing, PROC COMPARE sets a global macro variable named 
SYSINFO.  A value of 0 for &SYSINFO indicates that two data sets are exactly equivalent down to the data set 
labels.  The %assert_data_equal() macro as implemented below requires that level of equivalence to report a passing 
test.  The assertion macro provides a parameter, FUZZ, to allow for small differences due to machine precision or 
rounding.  PROC COMPARE prints a warning to the log if either data set has zero observations. To avoid this 
warning, the macro requires that both data sets exist and have observations.  This is accomplished via the 
%any_obs() utility macro.  A separate assertion macro could be used to assert that a data set is empty. 

 

 

TESTING FOR ERROR CONDITIONS 
In addition to testing the behavior of a macro under expected conditions, it is advisable to exercise the code with 
invalid parameters, out of range values, etc. in order to test how the macro handles errors.  In some cases, the actual 
objective of the macro is to generate an error.  For example, one might write a macro to abort the SAS session if a 
certain condition is met.  SAS provides a number of mechanisms, in particular a number of macro variables, to 
automatically detect errors.  However, knowing which error macro variable to check within a given context can be 
confusing.  It is much easier to inspect the log to determine if any errors or warnings are present.  This too can be 
automated: SAS provides PROC PRINTTO to redirect the log to an external file.  The following procedure tests the 
log messages produced by a section of SAS code: 

1. Turn off page numbers and dates in the log (options NODATE NONUMBER).  Optionally set NONOTES, 
NOSOURCE, NOSOURCE2, NOMPRINT, NOMLOGIC, and NOSYMBOLGEN. 

2. Redirect the log to an external file via PROC PRINTTO (ideally write the log to the WORK directory) 

3. Execute the macro to be tested 

4. Redirect the log back to the default location.  Restore options turned off in step 1. 

5. Read the external file created in step 2 into a SAS data set 

6. Compare the data set produced in step 5 to an expected data set using %assert_data_equal() 

Notice that testing for log anomalies has been reduced to a comparison of data sets.  There are some scenarios in 
which the above procedure will not work.  For example, if a session is aborted (e.g. by a macro designed for that 
purpose), portions of the log will be inaccessible to the aborted session.  Similarly, testing for certain fatal error 
conditions can put the SAS session into a state that is difficult or impossible to recover from.  For these more extreme 
testing scenarios, the test program can dynamically write the section of code to be tested to an external file, execute 
that code via a child SAS session using the SYSTEM() function, and then read in the child SAS session’s log as in 
step 5 above.  This approach completely insulates the main test program from the fatal error condition that it is trying 
to detect.  Both approaches can be implemented in a single utility macro which takes as parameters the code to be 
executed (stored in a macro variable) and a flag to indicate whether the code should be executed in a child session or 
as part of the current session (the latter approach will capture the log using PROC PRINTTO). 

 

%macro assert_data_equal( 
   ds1=,    /* Data set one */ 
   ds2=,    /* Data set two */ 
   id=,     /* Optional: ID variables to align data sets */ 
   fuzz=0   /* Vars x and y are reported as identical if abs(x - y) <= &fuzz */ 
); 
   %if %any_obs(&ds1) and %any_obs(&ds2) %then %do; 
      proc compare base=&ds1 comp=&ds2 listall method=absolute criterion=&fuzz; 
         %if &id ne %str() %then id &id;; 
      run; 
 
      %if &sysinfo = 0 %then %put RESULT: Pass; 
      %else %put RESULT: Fail; 
   %end; 
   %else %put RESULT: Fail;  %** Test fails for empty or missing data sets; 
%mend assert_data_equal; 
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GLUING THE FRAMEWORK TOGETHER: THE DRIVER PROGRAM 
To reap the benefits of a unit testing framework, there must be a means to run multiple tests at once, detect the 
results of those tests, and report the results in an automated manner.  This is achieved through a driver program.  
One implementation of a driver program is shown below. 

 
This implementation consists of four parts: 

1. A configuration file, which is brought into the program via an %INCLUDE statement.  The configuration file 
identifies the location of directories, sets up autocall libraries, and sets global options and macro variables. 

2. A call to a macro (%run_all_tests) which identifies the test programs to run, runs them, parses the log to 
identify test results and log issues, and saves the test results to a data set. 

3. A call to a macro (%summarize_results) which summarizes the test results.  

4. A call to a macro (%write_reports) which writes the test summary, detailed test results, and log scan results 
via three PROC REPORT steps to an RTF file. 

The %run_all_tests() macro is the most complex part of the entire unit test framework.  A simple yet robust 
implementation in less than 60 (non-whitespace, non-comment) lines of code is provided in the Appendix.  The 
following pseudo code illustrates the %run_all_tests() algorithm: 

   

00 BEGIN DATA STEP 
01    INITIALIZE VARIABLE LENGTHS 
02    CREATE A FILEREF AND OPEN THE DIRECTORY 
03 
04    LOOP OVER ALL FILES IN THE DIRECTORY 
05       READ FILE NAME (SKIPPING NON-TEST FILES) 
06       EXECUTE TEST PROGRAM (WRITE LOG TO THE WORK DIRECTORY) 
07       INITIALIZE LOG FAILURE FLAG TO 0 
08 
09       LOOP OVER ALL LINES IN THE LOG 
10          READ LOG LINE 
11          PARSE LOG LINE INTO PART1 AND PART2 DELIMITED BY A COLON 
12 
13          IF PART1 EQUALS 
14             ‘TEST’    THEN READ UNIT NAME AND TEST ID 
15             ‘DESC’    THEN READ TEST DESCRIPTION 
16             ‘EXPECT’  THEN READ EXPECTED RESULTS DESCRIPTION 
17             ‘RESULT’  THEN COMPUTE OVERALL RESULT  
18             ‘ENDTEST’ THEN OUTPUT TEST RESULT RECORD                           
19          ELSE IF LINE MATCHES REGULAR EXPRESSION THEN  
20             INCREMENT LOG FAILURE FLAG 
21             OUTPUT DIRTY LOG SCAN RECORD  
22          END IF 
23 
24          IF END OF FILE AND NO LOG ISSUES THEN OUTPUT CLEAN LOG SCAN RECORD 
25          IF END OF FILE OR END OF TEST THEN RESET TEST CASE VARIABLES 
26       END LOOP OVER LINES IN THE LOG 
27    END LOOP OVER ALL FILES IN DIRECTORY 
28 
29    CLOSE DIRECTORY 
30 END DATA STEP 
 

Though the full implementation is provided in the Appendix, it may be helpful to discuss the innermost loop in more 
detail.  The following three lines correspond to lines 10 and 11 of the pseudo code.  The INFILE statement uses the 
FILEVAR option to identify the log file to open.  In this manner, once the inner loop completes and a new test 

%include config; 
%run_all_tests(dir=&test_dir, results=results, logscan=logscan); 
%summarize_results(data=results, out=sumry); 
%write_reports(summary=sumry, detail=results, logscan=logscan); 
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program is run by the outer loop, the INFILE statement will close the previous log file and open the new log file.  
Notice also that the INFILE statement specifies that a colon will delimit records.  The INPUT statement on the next 
line uses modified list input (via the colon operator between PART1 and $UPCASE200.) to honor the delimiter when 
reading PART1; but, formatted input is used when reading PART2 and so any colons in the remainder of the log line 
are ignored.  The third line glues PART1 and PART2 back together (removing control characters, if any) so that the 
log scanning section has a complete line to parse.   

 
Having read a line from the log, the next step is to identify messages from the test programs.  Recall from the 
example program to test the %target_day() macro that the test description macros such as %test_begin() and 
%test_describe() write lines to the log in the form of “<TYPE>: <MESSAGE>”.  These log lines serve as a means for 
the test program to communicate test information to the driver program as the driver program parses the test 
program’s log.  There are five types of test messages that this implementation of the driver program expects: 

• TEST: <unit> [<id>] 

• DESC: <description> 

• EXPECT: <description> 

• RESULTS: <Pass | Fail | Manual> 

• ENDTEST 

The driver program therefore checks the current line against each of these possibilities.  If the message type is 
“TEST”, the driver program reads the unit name and test id: 

 
If the message type is “DESC” or “EXPECT”, the driver program reads the description and concatenates it to any 
previous descriptions provided for the same test.  In this way, multiple calls to %test_describe() or %test_expected() 
can be used to provide long descriptions. 

 
A given test case could require multiple assertions, each writing a separate RESULT: message to the log.  Therefore, 
the driver program needs to determine the overall result for the test case by considering multiple individual results.  If 
at least one of the test’s results is “Fail”, the entire test case fails.  If none of the results are failures, but at least one 
result is “Manual”, the overall test result is “Manual.”  Finally, if all of the results are “Pass”, the test case as a whole 
passes.  The informat used in the below code maps “Fail” to 3, “Manual” to 2, and “Pass” to 1.  As a result, computing 
the maximum of the individual results produces the correct overall result.   

 
If the message type is “ENDTEST”, the driver program writes the test result to an output data set. 

 
Finally, if the log line does not contain a message from the test program, the driver program compares the line to a 
Perl regular expression defined in the configuration file in order to identify errors, warnings, and unexpected notes.  If 
the line matches the regular expression, it is written to a separate log scan data set. 

else if part1 = 'ENDTEST' then output &results; 
 

else if part1 = 'RESULT' then do; 
   resultn = max(input(upcase(part2), result.), resultn); 
   result = put(resultn, result.); 
end; 

if part1 = 'TEST' then do; 
   unit = left(scan(right(part2), 1, '[]')); 
   id   = left(scan(right(part2), 2, '[]')); 
end; 
 

infile logref end=eof filevar=log truncover dlm=':'; 
input part1 : $upcase200. part2 $200.; ** READ LINE IN TWO PARTS; 
line = compress(catx(': ', part1, part2), , 'c'); 
 
 

else if part1 = 'DESC' then desc = catx(' ', desc, part2); 
else if part1 = 'EXPECT' then expect = catx(' ', expect, part2); 
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A simple setting for the SEARCH macro variable is below.  The below setting is far from adequate to identify the 
variety of log notes that might indicate a problem.  A more complete implementation would include more than 20 
common log strings.  However, the below example provides the basic form that this variable must take. 

 %let SEARCH = (^WARNING:)|(^ERROR:)|(^[^\d].*_ERROR_)|(^NOTE: MERGE); 

An explanation of Perl regular expressions is beyond the scope of this paper, but the Base SAS documentation 
discusses the PRX family of functions and provides basic information on Perl regular expressions. 

 

SUMMARIZING AND REPORTING OUTPUT 
After running all test programs and scanning each log, the %run_all_tests() macro produces two output data sets: 

• A test results data set containing one record per test case 

• A log scan data set containing every problematic log line identified by the Perl regular expression discussed 
above, along with one record for each clean log indicating that the log has no issues. 

The %write_reports() macro outputs the test results data set to an RTF file via PROC REPORT (using an ODS 
template already available for standard TLF reporting), producing output similar to the following:   

 
The second output data set produced by the %run_all_tests() macro contains all problematic log lines identified 
during the log scanning.  If a file’s log was clean, the data set contains a single record for the file indicating that the 
log was clean.  The %write_reports() macro outputs the log scan data set via PROC REPORT.  An example log scan 
report is shown below. 

 

   

 

 

 

 

 
Finally, the %summarize_tests() macro, called before %write_reports(), summarizes the test results for each macro 
and across all macros.  This simple summary is achieved via four steps: PROC FREQ, PROC TRANSPOSE, and two 
DATA steps.  Summaries of other information contained in the test results and log scan data sets could easily be 
added as well.  The %write_reports() macro then outputs the summarized results: 

else if prxmatch(cats("/&search/i"), line) > 0 then do; 
   logfail+1; 
   output &logscan; 
end; 
 



A Simple Approach to the Automated Unit Testing of Clinical SAS® Macros, Continued 

 

9 

  
The reports that are provided by the driver program provide two key benefits.  First, they provide immediate feedback 
on all test cases.  Second, the reports serve as permanent documentation of testing activities in support of SOPs and 
regulatory requirements. 

 

RELATED WORK 
The literature on unit testing in the broader software development community is vast; freely available frameworks are 
available for the unit testing of programs written in languages such as Java and C#.  Within the SAS community, 
there is no de facto standard unit testing framework.  However, there are two open source frameworks tailored to 
SAS: FUTS and SASUnit.  FUTS was developed at Thotwave around 2006 and described in a SUGI paper by Jeff 
Wright [8].  It is released under the Eclipse Public License and is available at sascommunity.org.  FUTS is beautifully 
simple: it consists only of a library of SAS assertion macros along with a Perl script to serve as a driver program.  Perl 
must be installed to use FUTS.  Test results are reported as text to the DOS command window rather than to a 
formatted report.  SASUnit was developed at HMS Analytical Software GmbH around 2008 and is described in 
multiple PhUSE papers [3].  It is actively supported and in continued development at sourceforge.net.  It is released 
under the GNU General Public License version 2.0.  SASUnit produces impressive and professional HTML output; as 
a result, SASUnit’s implementation is more complicated than the implementation of FUTS. 

There is a growing body of literature on SAS unit testing, much of it originating in Europe.  Di Tommaso provides an 
excellent discussion of unit testing for SAS programs [1].  His paper describes the use of a testing macro, 
%PASSFAIL, to standardize the design and reporting of individual test cases.  Di Tommaso’s paper suggests test 
suite automation as a future area of work.  As discussed in the introduction, most clinical research organizations 
utilize double programming to validate study-specific data sets, tables, listings, and figures.  Farrugia describes a 
fascinating pilot project at Roche to use unit testing as the primary validation method for a complex analysis data set 
[2].  He reports that unit testing uncovered bugs in the production program which were missed by double 
programming, underscoring some of the shortcomings of the traditional double programming paradigm.   

 

CONCLUSION 
Automating aspects of unit testing through the use of a unit testing framework provides several advantages.  
Regression testing is much easier, which could alleviate fears associated with breaking existing macros.  This in turn 
encourages the writing of better tests—tests likely to find errors—as well as the enhancement and refactoring of 
macros.  By standardizing the manner in which programmers write tests, unit test frameworks can make the job of 
writing new tests simpler.  And, by automatically reporting the results of all test runs in a formatted document, unit test 
frameworks provide immediate feedback on programming changes as well as permanent documentation of validation 
activities.  This paper discussed the basic concepts of a simple unit testing framework and explained how to write a 
basic framework entirely in SAS.  Due to its simplicity, a basic unit testing framework can be easily developed and 
validated, taught to new staff, and used in the validation of clinical SAS macros.  And, by developing a simple 
framework in-house, an organization can more easily expand upon the framework, adding new features and library 
macros as the need arises. 
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APPENDIX: RUN_ALL_TESTS MACRO 
%macro run_all_tests( 
   dir=,      /* Directory containing the tests */ 
   results=,  /* Output data set for test results */ 
   logscan=   /* Output data set for log scan */ 
); 
   data &results (keep=unit id file desc expect result) 
        &logscan (keep=file linenum line syscc) 
      ; 
      length file log line $200 dref unit id result $32 desc expect $5000; 
 
      ** CREATE A FILEREF AND OPEN THE DIRECTORY; 
      status = filename(dref, "&dir"); 
      if status=0 then dirid = dopen(dref); 
 
      if dirid <= 0 then do; 
         put "ERROR: Directory &dir could not be opened"; 
      end; 
      else do i=1 to dnum(dirid); ** READ ALL FILES IN THE DIRECTORY; 
         ** READ FILE NAME (SKIPPING NON-TEST FILES); 
         file = dread(dirid, i); 
         if prxmatch('/^TEST_.*\.SAS$/i', strip(file)) = 0 then continue; 
 
         ** EXECUTE TEST PROGRAM.  THE LOG IS WRITTEN TO THE WORK DIRECTORY; 
         syscc = system("&sasexe -sysin '&dir\" || strip(file) || "'"); 
         log = cats("&work\", scan(file, 1, '.'), ".log"); 
         logfail = 0; ** INITIALIZE LOG STATUS; 
 
         if fileexist(log)=0 then do; 
            put "ERROR: Log does not exist: " log=; 
         end; 
         else do linenum=1 by 1 until(eof); ** READ ALL LINES IN THE LOG; 
            infile logref end=eof filevar=log truncover dlm=':'; 
            input part1 : $upcase200. part2 $200.; ** READ LINE IN TWO PARTS; 
            line = compress(catx(': ', part1, part2), , 'c'); 
 
            ** SEARCH FOR TEST RESULTS AND LOG PROBLEMS; 
            if part1 = 'TEST' then do; 
               unit = left(scan(right(part2), 1, '[]')); 
               id   = left(scan(right(part2), 2, '[]')); 
            end; 
            else if part1 = 'DESC' then desc = catx(' ', desc, part2); 
            else if part1 = 'EXPECT' then expect = catx(' ', expect, part2); 
            else if part1 = 'RESULT' then do; 
               resultn = max(input(upcase(part2), result.), resultn); 
               result = put(resultn, result.); 
            end; 
            else if part1 = 'ENDTEST' then output &results; 
            else if prxmatch(cats("/&search/i"), line) > 0 then do; 
               logfail+1; 
               output &logscan; 
            end; 
 
            ** AT THE END OF THE LOG, INDICATE IF CLEAN; 
            if eof and logfail < 1 then do; 
               line = "Clean"; 
               output &logscan; 
            end; 
 
            ** RESET VARIABLES; 
            if eof or part1='ENDTEST' then do; 
               call missing(unit, id, desc, expect, of result:); 
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            end; 
        end; ** LOOP OVER LINES IN THE LOG; 
      end; ** LOOP OVER ALL FILES; 
 
      ** CLOSE DIRECTORY AND STOP THE DATA STEP; 
      status = dclose(dirid); 
      stop; 
   run; 
 
   %** SAVE TEMP LOG/LST; 
   %sysexec(move "&work\*.log" "&dir\."); 
   %sysexec(move "&work\*.lst" "&dir\."); 
%mend run_all_tests; 
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