
Toward Tractable Instantiation of Conceptual Data Models
using Non-Semantics-Preserving Model Transformations

Matthew Nizol
Michigan State University

East Lansing, MI, USA

nizolmat@cse.msu.edu

Laura K. Dillon
Michigan State University

East Lansing, MI, USA

ldillon@cse.msu.edu

R.E.K. Stirewalt
LogicBlox, Inc.

Atlanta, GA, USA
kurt.stirewalt@logicblox.com

ABSTRACT

As a bridge from informal business requirements to precise
specifications, conceptual models serve a critical role in the
development of enterprise systems. Instantiating concep-
tual models with test data can help stakeholders validate
the model and provide developers with a test database to
validate their code. ORM is a popular conceptual model-
ing language due in part to its expressive constraint lan-
guage. Due to that expressiveness, instantiating an arbi-
trary ORM model is NP-hard. Smaragdakis et al. identified
a subset of ORM called ORM− that can be instantiated
in polynomial time. However, ORM− excludes several con-
straints commonly used in commercial models. Recent re-
search has extended ORM− through semantics-preserving
transformations. We extend the set of ORM models that
can be transformed to ORM− models by using a class of
non-semantics-preserving transformations called constraint
strengthening. We formalize our approach as a special case
of Stevens’ model transformation framework. We discuss an
example transformation and its limitations, and we conclude
with a proposal for future research.

Categories and Subject Descriptors

D2.5 [Software Engineering]: Testing and Debugging; H2
[Database Management]: Logical Design—Data models

General Terms

Verification, theory

Keywords

ORM, test data generation, model transformation, databases

1. INTRODUCTION
Enterprise decision making is increasingly data-driven. To

properly design data-intensive enterprise systems that sup-
port this decision-making process, developers working in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MiSE ’14, June 2 - June 3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2849-4/14/06 ...$15.00.

concert with business domain experts must first conceptu-
ally model the database. A conceptual model defines the
real-world entities relevant to the system, the relationships
among those entities, and constraints that clarify the se-
mantics of the model. Beyond serving as a blueprint for the
database schema, a conceptual model can aid in the valida-
tion of an enterprise system. Populating a conceptual model
with data that adheres to the constraints can aid business
stakeholders in validating system requirements. Moreover,
test data generated from a conceptual model can be used by
programmers to test the applications that use the database.

Test data generation from conceptual models is an ac-
tive area of research [10, 7, 13]. One recent line of research
has focused on the instantiation of models developed in the
Object Role Modeling (ORM) language. ORM is a graph-
ical conceptual modeling language that maps into first or-
der logic [5]. ORM represents a domain as objects playing
roles in relations that represent sets of facts; an expressive
constraint language allows precise definition of the valid re-
lations. The expressiveness of ORM empowers modelers,
and ORM’s intrinsic formality permits automated reason-
ing. Unfortunately, these two aspects of ORM are in con-
flict: due to the expressiveness of the constraint language,
determining whether an arbitrary ORM model is satisfiable
is an NP-hard problem [10].

Constraints that require comparisons of the individual ob-
jects playing roles in a relation are a significant factor in the
complexity of the ORM satisfiability problem. Based on
this observation, Smaragdakis et al. [10] defined ORM−, a
strict subset of ORM that only includes constraints related
to the cardinalities of model elements. ORM− models can
be checked for satisfiability in time polynomial in the model
size and can be instantiated in time polynomial in the gen-
erated output size. However, a follow-up study of models
developed at LogicBlox, Inc. found that most models de-
veloped for commercial use include constraints outside of
ORM− [7]. To remedy this, recent research has extended
ORM− to include commonly used features of ORM such
as objectification and compound reference schemes. In par-
ticular, models containing compound reference schemes can
be transformed into ORM− models via semantics-preserving
transformations [7].

Still, there are several commonly used constraint types
in ORM for which we do not know of a general semantics-
preserving transformation to an ORM− model. We have ob-
served that in some cases we can replace those constraints
with more restrictive constraints and still obtain an instan-
tiable ORM− model. This form of transformation, called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

MiSE’14, June 2 – June 3, 2014, Hyderabad, India
ACM 978-1-4503-2849-4/14/06
http://dx.doi.org/10.1145/2593770.2593771

13

Figure 1: An example ORM model

constraint strengthening, can result in a model with fewer
instances but that can be efficiently instantiated using the
ORM− algorithm. If constraint strengthening produces an
ORM− model with at least one instance, then that instance
is also an instance of the source ORM model. Of course,
the converse is not true: if the transformed model has no
instance, we cannot conclude that the source ORM model
is unsatisfiable. While this approach does not provide the
same theoretical guarantee enjoyed by semantics-preserving
transformations, our recent analysis of a real-world model
suggests that it can be useful in a practical setting.

The contributions of this paper are threefold. First, we
relate our work to the literature on model transformation by
framing our problem as a restricted case of Stevens’ frame-
work [11]. Within this framework, we precisely categorize
transformations as semantics-preserving, strengthening, and
constraint strengthening. Second, we extend the set of ORM
models that can be instantiated by the ORM− algorithm by
applying constraint strengthening as a transformation step.
While strengthening transformations have been discussed by
Proper and Halpin [9] in the context of schema optimization,
we are the first to extend the set of ORM models that can
be transformed to ORM− models in this manner. Third,
we discuss future research needed to theoretically extend
and empirically validate the use of strengthening transfor-
mations for test data generation. In particular, we discuss
the need for further research on issues such as traceability
and triviality.

2. BACKGROUND

2.1 ORM and ORM—

ORM [5] is a conceptual modeling language based on first
order logic. An ORM model consists of a set of object types
O, a set of fact types F , and a set of constraints C. In
that sense, an ORM model M is a 3-tuple (O,F , C)1. ORM
models may be displayed graphically. We use Figure 1 and
adopt some notational conventions from [7] to assist in the
subsequent discussion of basic ORM terminology.

Each object type O ∈ O defines both a domain DO and a
reference scheme that identifies objects drawn from DO. Ob-
ject types are shown as rounded rectangles: solid edges indi-
cate an entity type, which requires a reference scheme, while
dashed edges indicate a value type, which is self-identifying.
The reference scheme for an entity type can be indicated
in parentheses. For example, in Figure 1, Patient is an en-
tity type whose reference scheme is “(.id),”which implies the

1This is a simplification. See [9] for a more complete for-
malism.

existence of a value type named PatientId used to identify
Patients. An object is an element of the domain of an object
type. A population of an object type O is a subset of DO .

A fact type F ∈ F defines a relationship among one or
more object types. A fact type is displayed as a set of con-
tiguous boxes, each representing a role in that relationship
played by the connected object type. For example, Patient
and Study each play a role in the binary fact type “Patient
enrolls in Study.” We may enumerate the object types re-
lated by a fact type via subscripts; for instance, FO1,...,Ok

denotes a fact type relating the k object types O1 through
Ok. Roles may be explicitly named in the diagram by brack-
eted text next to the role (e.g. [R1]). We may also denote
the jth role in fact type Fi as Ri,j . The object type playing
role Ri,j is identified by the function P layer(Ri,j). A fact
is an element of the domain of a fact type; in effect, a fact is
a tuple of objects of the appropriate types. A population of
a fact type is a subset of the domain of that fact type; thus,
a population of a fact type is a relation.

A constraint C ∈ C restricts the valid population of one or
more object or fact types. A constraint is said to cover the
roles that it restricts. For example, the solid line above role
R2 in Figure 1 is an internal uniqueness constraint, which
covers R2. An internal uniqueness constraint asserts that an
object may play the covered role at most once. In this case,
each Patient may enroll in at most one Study. The dot on
role R3 is a mandatory constraint, which specifies that each
object in the population of that object type must play that
role at least once. Thus, every Study must have at least one
enrolled Patient. Because these constraints cover only one
role, they are called simple; a constraint, however, can cover
more than one role in a fact type. For example, Figure 1 con-
tains an internal uniqueness constraint covering both roles
of the “meets exclusion-” fact type. This constraint requires
only that each (Criteria, Patient) tuple in the population of
that fact type is unique; in effect, the fact type is an m:n
relationship. Some constraints, such as subset constraints,
cover roles in more than one fact type. Figure 1 includes
two subset constraints. A subset constraint is displayed as
a subset symbol inside a circle connected by a dashed arrow
from the subset role to the superset role. For example, the
constraint from role R5 to role R2 specifies that each Patient
who receives Treatment must be enrolled in a Study.

Each model M defines a set of instances IM . More pre-
cisely, an instance I ∈ IM is a mapping of the object and
fact types in model M to populations that satisfy all con-
straints in the constraint set C. We denote the popula-
tions of an object type O and a fact type F for a given
instance I as I(O) and I(F), respectively. Because pop-
ulations are sets of objects or facts that must be drawn
from the appropriate domain, we have that I(O) ⊆ DO and
I(FO1,O2,...,Ok

) ⊆ DO1
×DO2

× ... ×DOk
. The population

of role Ri,j in fact type Fi, denoted as πRi,j
(I(Fi)), is the

projection of the fact type’s population on that role.
We can define various levels of model satisfiability [6]. A

model M = (O,F , C) is strongly satisfiable if there exists
at least one instance I ∈ IM such that I(F) is non-empty
for all fact types F ∈ F . A model M = (O,F , C) is weakly
satisfiable2 if there exists at least one instance I ∈ IM such
that I(O) is non-empty for all object types O ∈ O. Clearly
strong satisfiability implies weak satisfiability. Because our

2Jarrar calls this concept satisfiability

14

objective is to find at least one instance of a model for pur-
poses of test data generation, we consider a model satisfiable
if it is weakly satisfiable3.

An ORM− model is an ORM model whose constraint set
C is restricted to certain forms of uniqueness, frequency,
mandatory, value, cardinality, and subtype constraints4 [10].
Each of these constraint types places a restriction on the car-
dinality of the roles or object types it covers. The ORM−

satisfiability algorithm generates a system of inequalities
based on these constraints; a solution to the system repre-
sents cardinality assignments for each object type and role
in the model. Because every constraint in ORM− can be
expressed using inequalities that have at most one variable
on the left hand side, the system can be solved in polyno-
mial time using a fixpoint algorithm. Given the computed
cardinalities, [10] then shows how to efficiently generate an
instance for the model.

2.2 Model Transformation
One extension to ORM− proposed in [7] makes use of

semantics-preserving model transformations to convert an
ORM model containing compound reference schemes into
an ORM− model. The approach we propose in this paper
makes use of non-semantics-preserving model transforma-
tions. To permit formal reasoning about these transforma-
tions, we precisely define the notion of model transformation
and then discuss how transformations can be classified ac-
cording to their semantics-preservation properties.

Model transformation has been studied in the database
community5 in contexts such as database normalization, op-
timization, and reverse engineering [3]. Recent software
engineering scholarship has investigated standardized lan-
guages such as QVT [2] for specifying transformations be-
tween models of a system. While discussing open issues in
both the QVT standard and in the broader model transfor-
mation community, Stevens [11, 12] defines a useful frame-
work for formal reasoning about model transformations. A
very simple model of a unidirectional transformation is a
function t : M → N where M and N are metamodels6 [11].
Stevens ultimately proposes a more complex notation for
model transformation due to the need to specify bidirec-
tional transformations between persistent models. The tar-
get models in our approach are transient: they exist only
to find an instance of the original model, and then are dis-
carded. Thus, the simpler formalism serves our purpose well.
In fact, because our approach only considers transformations
between ORM models, we restrict our definition further:

Definition 2.1. Let ORM be the set of all well-formed
ORM models. Then a model transformation is a function
t : ORM → ORM.

In Stevens’ framework, two models are considered consis-
tent if a consistency relation R holds between them [12].
That is, R(M,N) implies that models M and N are consis-
tent. A transformation t must not produce a target model

3An implicit cardinality constraint “# > 0” covers each ob-
ject type
4ORM− supports only internal, non-overlapping forms of
uniqueness and frequency constraints. Explicit disjunctive
mandatory constraints are not permitted.
5Under the name schema transformation
6Following Stevens, we identify a metamodel with the set of
models it defines.

inconsistent with the source model; therefore, a transfor-
mation t is correct with respect to a consistency relation R

iff t(M) = N implies R(M,N)7. While a transformation
is a function, a consistency relation need not be: the same
source model can be considered consistent with more than
one target model. Thus, more than one correct transforma-
tion function can exist with respect to a given consistency
relation. The definition of consistency depends on the ap-
plication. For the purpose of finding an instance of a source
ORM model from a target ORM− model, we require a no-
tion of consistency that takes into account the relationship
between the instance sets of each pair of consistent models.
In the next two sections, we define three consistency rela-
tions, each based upon different relationships between the
instance sets of consistent models, which are useful in the
context of test data generation from ORM models.

3. TRANSFORMATION TYPES

3.1 Semantics-Preserving
Ideally, a transformed model will have an instance if and

only if the original model has an instance. A transformation
provides this guarantee if every instance of the source model
maps to a unique instance of the target model and vice
versa. We call such transformations semantics-preserving.
A semantics-preserving transformation is defined in terms
of the semantics-preserving consistency relation Rsem:

Definition 3.1. For all models M,N ∈ ORM, the con-
sistency relation Rsem(M,N) holds if and only if there ex-
ists a bijection r : IM → IN . A transformation t : ORM →
ORM is semantics-preserving if and only if for all models
M,N ∈ ORM, t(M) = N implies Rsem(M,N).

Under a semantics-preserving transformation, an instance
of the original model can always be recovered from an in-
stance of the target model (and vice versa) via the bijective
mapping. Recall that our objective is to find an instance for
the original model, and so the transformed models are tran-
sient; having found an instance of the transformed model,
we simply need to ensure that there exists some mapping
back to the original. This property is guaranteed by Defini-
tion 3.1.

3.2 Strengthening
While a semantics-preserving transformation from an ORM

model to an ORM− model can permit efficient instantiation
of the source model, the NP-hardness of the ORM satisfi-
ability problem8 suggests that such transformations do not
exist for all source ORM models. Nevertheless, a semantics-
preserving transformation may not be necessary in every
case: our objective is simply to find one instance of the orig-
inal ORM model rather than every possible instance. Thus,
we might be able to modify the model in a non-semantics-
preserving fashion, as long as we ensure that there is some
means to map instances of the target model back to instances
of the original model. The existence of an injection from the
target instance set IN to the source instance set IM would
be a sufficient condition for this purpose. The target model

7Stevens defines other properties such as hippocraticness
and undoability which are relevant when the target model
is persistent.
8See [10] regarding the problem’s NP-completeness

15

N could be more restrictive than the source model M , in
the sense that the target model could admit fewer instances.
For this reason, we call such transformations strengthening.
A strengthening transformation is defined in terms of the
strengthening consistency relation Rstr:

Definition 3.2. For all models M,N ∈ ORM, the con-
sistency relation Rstr(M,N) holds if and only if there exists
an injection r : IN → IM . A transformation t : ORM →
ORM is strengthening if and only if for all models M,N ∈
ORM, t(M) = N implies Rstr(M,N).

Analysis of a model developed by LogicBlox for a commer-
cial client suggests that strengthening transformations can
be useful in a practical setting. The model contains a set
of constraints that are outside of both ORM− and the ex-
tensions in [7]. However, replacing some of these constraints
with more restrictive constraints produces an ORM− model
that, while not semantically equivalent to the original, is
nevertheless satisfiable. In fact, because we do not modify
the object or fact types of the original model, the instances
of the transformed model are also instances of the original
model. That is, the instance set of the transformed model
is a subset of the instance set of the original model. We
call transformations with this property constraint strength-
ening. A constraint-strengthening transformation is defined
in terms of the constraint-strengthening consistency relation
Rcon:

Definition 3.3. For all models M,N ∈ ORM, the con-
sistency relation Rcon(M,N) holds if and only if IN ⊆ IM .
A transformation t : ORM → ORM is called constraint-
strengthening if and only if for all models M,N ∈ ORM,
t(M) = N implies Rcon(M,N).

Corollary 3.4 directly follows from Definitions 3.2 and 3.3:

Corollary 3.4. Every constraint-strengthening transfor-
mation is a strengthening transformation.

For example, Figure 2 is the result of applying a constraint-
strengthening transformation to Figure 1. Specifically, the
transformation replaced the subset constraints with manda-
tory constraints on the superset roles. The mandatory con-
straint on role R2, which requires that all Patients enroll
in some Study, implies a subset constraint from R5 to R2.
The mandatory constraint on role R1 has similar seman-
tics. Hence, any instance of the transformed model is still
an instance of the original model. However, the semantics
have not been preserved: there are instances of the original
model that are not valid in the transformed model. This
type of transformation, which we call a Subset-Mandatory
transformation, is specified formally as follows:

Definition 3.5. A transformation t : ORM → ORM is
a Subset-Mandatory transformation if for all models M =
(O,F , C) such that t(M) 6= M :

1. M contains a simple subset constraint C from some
subset role Ri,j in fact type Fi to some superset role
Rk,l in fact type Fk, with i 6= k

2. P layer(Ri,j) = P layer(Rk,l)

3. t(M) = (O,F , C′) where C′ is C replacing subset con-
straint C with a mandatory constraint C′ on role Rk,l

Figure 2: Constraint strengthening applied to Fig. 1

Lemma 3.6. Every Subset-Mandatory transformation t is
constraint strengthening.

Proof. Consider any models M and N such that t(M) =
N . If there exists an instance I ∈ IN , then I satisfies
all constraints in C′ = C \ {C} ∪ {C′}. Because I satis-
fies C′, πRk,l

(I(Fk)) = I(P layer(Rk,l)), which implies that
πRi,j

(I(Fi)) ⊆ πRk,l
(I(Fk)). Therefore, I also satisfies C

and is an instance of M . Hence, IN ⊆ IM .

This simple transformation achieves an important objec-
tive: it replaces a subset constraint, which is not part of the
ORM− language, with a simple mandatory constraint, which
is defined in ORM−. Hence, after applying this transforma-
tion, we can use the ORM− algorithm to efficiently search
for an instance. If we identify an instance, it is also an in-
stance of the original model. As we will discuss in the next
section, however, a strengthening transformation can pro-
duce an unsatisfiable target model from a satisfiable source
model.

Given an arbitrary real-world ORM model, a single trans-
formation is unlikely to produce an ORM− model. Thus, we
need to be able to compose multiple transformations to pro-
duce an ORM− model from which to compute an instance
of the source ORM model. The following corollary is useful
in this regard:

Corollary 3.7. The sets of semantics-preserving trans-
formations, strengthening transformations, and constraint-
strengthening transformations are each closed under compo-
sition.

The proof follows easily from closure properties of bijec-
tive and injective functions and from the transitivity of the
subset relation.

4. FUTURE RESEARCH

4.1 Triviality
Our objective is to find a weakly satisfiable target model

(i.e., there must be at least one instance of the target model
in which every object type is populated). Not every strength-
ening transformation can meet this objective: a strengthen-
ing transformation may be too restrictive and produce an
unsatisfiable model. In that case, the instance set IN of the
target model N is empty. An empty instance set satisfies
Definition 3.2 because the empty function is trivially injec-
tive. However, such a transformation is not useful for our
purpose. We call a transformation whose target instance set
is empty a trivial transformation.

16

Figure 3: Alternate version of Fig. 1

Consider Figure 3, which is an alternate version of Fig-
ure 1 in which the modeler added an exclusion constraint
between roles R1 and R2 to enforce the rule that no Patient
who meets an exclusion Criteria may enroll in a Study. If
we apply the Subset-Mandatory strengthening transforma-
tion to both subset constraints as we did in Figure 2, the re-
sult will be an unsatisfiable model. If mandatory constraints
on roles R1 and R2 require that every Patient both meets
some exclusion Criteria and enrolls in some Study, then the
exclusion constraint must be violated. If we honor the ex-
clusion constraint, then one of the mandatory constraints
must be violated. Thus, there would be no way to populate
any role played by Patient while satisfying all constraints in
the model.

Research by Jarrar [6] to enumerate unsatisfiability pat-
terns in ORM models provides a starting point for identi-
fying patterns that guarantee triviality. For example, re-
placing the subset constraints in Figure 3 with mandatory
constraints on R1 and R2 would produce the “Exclusion-
Mandatory” pattern [6]. One goal of our research will be
to identify additional anti-patterns that guarantee the im-
age under a strengthening transformation is unsatisfiable.
We can formalize such a pattern as a predicate that defines
a set of ORM models. Given such a predicate, we could
reason about whether a transformation is guaranteed to be
trivial.

Alternatively, we would like to identify conditions on a
source model that guarantee a strengthening transformation
is non-trivial if the source model is satisfiable. For example,
consider a predicate Q defined as follows:

Definition 4.1. For all models M ∈ ORM that satisfy
conditions (1) and (2) of Definition 3.5, define Q to contain
those models M that additionally satisfy the following:

1. The fact type Fk containing the superset role Rk,l is
binary

2. A simple internal uniqueness constraint Cuc covers Rk,l

3. The only constraints covering Rk,l are Cuc and the sub-
set constraint C

4. The other role of Fk, Rk,m, is covered by a (possibly
implied) cardinality constraint # > 0 and no other
constraints.

This predicate is useful for our purposes: if it holds for
a satisfiable model, then applying the Subset-Mandatory
transformation to that model is guaranteed to produce a
satisfiable target model.

Lemma 4.2. Let t be a Subset-Mandatory transformation.
For all models M ∈ ORM such that Q(M) holds, IM 6=
∅ =⇒ It(M) 6= ∅.

Proof. Consider any model M ∈ ORM such that Q(M)
and IM 6= ∅. Consider any instance I ∈ IM . Let Z =
I(P layer(Rk,l)) \ πRk,l

(I(Fk)). If Z = ∅, then I ∈ It(M).
Otherwise, let o be any element of πRk,m

(I(Fk)). Construct

I ′ = I , except that I ′(Fk) = I(Fk) ∪ (Z × {o}). I ′ satisfies
the constraints of parts (2) through (4) of Definition 4.1, so
I ′ ∈ IM . Moreover, πRk,l

(I ′(Fk)) = I ′(P layer(Rk,l)), so

I ′ ∈ It(M). Hence It(M) 6= ∅.

4.2 Traceability
The definitions of semantics-preserving and strengthening

transformations require that a mapping exists from the tar-
get instance set to the source instance set. However, the
definitions provide no clue as to how that mapping might
be identified. Moreover, while the mapping r : IN → IM

is injective for both semantics-preserving and strengthening
transformations, we do not require that the transformation
t itself is injective. That is, more than one source model
might map to the same target model. Given a target model
N , we need some means to determine the source model M
from among the set of potential source models for which
the consistency relation R holds. To address this issue, we
need a means to associate traceability information with the
target model. In other words, for each transformation, we
wish to maintain a record of the correspondence between
source and target model elements [8]. The exact form of
this traceability information is an area for future research.

5. RELATED WORK
Test data generation is an active area of research. Similar

work includes the TESTBLOX tool developed by Torlak to
generate test data from models of multidimensional OLAP
cubes [13]. Our work directly extends [10] and [7] through
model transformations. Model transformations were formal-
ized by the database community in the 1990s by authors such
as Hainaut [3, 4]. Hainaut defines a schema transformation
T declaratively in terms of a precondition P and a postcondi-
tion Q. Essentially, P and Q define subsets of the source and
target metamodels, respectively, on which the transforma-
tion acts. In our notation, P = {M ∈ ORM | t(M) 6= M}.
In addition, a transformation includes a mapping t between
instances. Hainaut’s definition of a transformation at the
instance level is similar to our definition of consistency rela-
tions based on the relationship between instance sets.

Part of our work relates to classifying transformations as
semantics-preserving, strengthening, and constraint strength-
ening. Czarnecki [1] and Mens [8] each propose broader clas-
sification schemes for model transformations. They define
a variety of dimensions along which transformations may
be classified including implementation issues (e.g., rule set
execution order), specification paradigms (e.g., relational,
graph-based, imperative), and transformation characteris-
tics (e.g., directionality).

Hainaut [3] describes semantics-decreasing and semantics-
augmenting transformations. A semantics-decreasing trans-
formation removes model elements; a semantics-augmenting
transformation adds model elements. These notions differ
from strengthening. For instance, the Subset-Mandatory
transformation both adds and removes one model element,

17

and so it cannot be clearly classified as semantics-augmenting
or semantics-decreasing. Proper and Halpin’s discussion of
strengthening transformations shares more similarity with
our work [9]. ORM models may be expressed as formulas
in predicate logic. Thus, a model instance for Proper and
Halpin is a valid interpretation of the logical formula of that
model. They define a strengthening transformation as gen-
erating a target model whose set of valid interpretations is
a subset of the source model’s set of valid interpretations.
While fundamentally the same as our concept of strengthen-
ing, Proper and Halpin apply strengthening transformations
to database optimization rather than to test data generation.
Finally, our work to identify triviality predicates is similar
to work by Jarrar [6] to identify unsatisfiability patterns.

6. CONCLUSION
We have had initial success in applying constraint strength-

ening to instantiate a conceptual model developed by Log-
icBlox that contains constraints outside of ORM−. We plan
to extend the empirical validation of constraint strengthen-
ing as a test data generation approach through a study of
additional commercial models provided by LogicBlox. Dur-
ing this study, we plan to identify additional strengthen-
ing transformations along with conditions under which they
are non-trivial. In cases where a triviality predicate does
not exist to predict the behavior of a strengthening trans-
formation, we will investigate using the ORM− consistency
checker as a subroutine and backtracking to attempt other
transformations if the first transformation fails. We plan to
further explore the composition of semantics-preserving and
strengthening transformations to determine how traceabil-
ity metadata can assist in recovering an original model from
a sequence of transformations. We will also investigate how
the order of transformations affects satisfiability.

In some sense it is intuitive that strengthening produces a
model that is easier to instantiate than the original: strength-
ening essentially restricts the search space for an instance.
At the same time, however, one may argue that a strength-
ened model is less useful for test data generation than the
original, as certain database states will not be tested. We ar-
gue that two concerns justify strengthening transformations
despite this limitation. First, it is clearly preferable to find
some instance of a conceptual model, however restricted se-
mantically, than no instance. Moreover, certain applications
such as performance testing may benefit from generating
as large a test database as possible—with the requirement
that the test data satisfies all constraints—without concern
for the semantic richness of the data. Thus, strengthen-
ing transformations may be useful in practice. As we con-
tinue our work on transformation-based test data genera-
tion, we will continue to explore these and other applications
of strengthening transformations.

7. ACKNOWLEDGMENTS
We would like to thank Matt McGill for early discussions

that led to some of these results and for valuable comments
on an earlier version of this paper.

8. REFERENCES
[1] K. Czarnecki and S. Helsen. Classification of model

transformation approaches. In OOPSLA’03 Workshop
on Generative Techniques in the Context of
Model-Driven Architecture, 2003.

[2] Object Management Group. Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification
Version 1.1, January 2011. OMG Document:
formal/2011-01-01.

[3] J.-L. Hainaut. Specification preservation in schema
transformations—application to semantics and
statistics. Data Knowl. Eng., 19(2):99–134, 1996.

[4] J.-L. Hainaut. Transformation of Knowledge,
Information and data: Theory and Applications,
chapter Transformation-based Database Engineering,
pages 1–26. IDEA Group, 2005.

[5] T. Halpin and T. Morgan. Information Modeling and
Relational Databases. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2nd edition, 2008.

[6] M. Jarrar and S. Heymans. Unsatisfiability reasoning
in ORM conceptual schemes. In Current Trends in
Database Technology – EDBT 2006, volume 4254 of
Lecture Notes in Computer Science, pages 517–534.
Springer Berlin Heidelberg, 2006.

[7] M. J. McGill, L. K. Dillon, and R. E. K. Stirewalt.
Scalable analysis of conceptual data models. In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages
56–66, New York, NY, USA, 2011. ACM.

[8] T. Mens and P. Van Gorp. A taxonomy of model
transformation. Electronic Notes in Theoretical
Computer Science, 152(0):125 – 142, 2006.
Proceedings of the International Workshop on Graph
and Model Transformation (GraMoT 2005).

[9] H. A. Proper and T. A. Halpin. Conceptual schema
optimisation—database optimisation before sliding
down the waterfall. Technical Report 341, Department
of Computer Science, University of Queensland,
Brisbane, Australia, July 1995. Version of June 23,
2004 at 10:31.

[10] Y. Smaragdakis, C. Csallner, and R. Subramanian.
Scalable satisfiability checking and test data
generation from modeling diagrams. Automated
Software Engineering, 16(1):73–99, 2009.

[11] P. Stevens. A landscape of bidirectional model
transformations. In Generative and Transformational
Techniques in Software Engineering II, volume 5235 of
Lecture Notes in Computer Science, pages 408–424.
Springer Berlin Heidelberg, 2008.

[12] P. Stevens. Bidirectional model transformations in
QVT: semantic issues and open questions. Software &
Systems Modeling, 9(1):7–20, 2010.

[13] E. Torlak. Scalable test data generation from
multidimensional models. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages
36:1–36:11, New York, NY, USA, 2012. ACM.

18

